Очень простой мощный усилитель на микросхеме. Самодельный звуковой усилитель на микросхеме Схемы унч звука на микросхемах

Очень простой мощный усилитель на микросхеме. Самодельный звуковой усилитель на микросхеме Схемы унч звука на микросхемах

Статья посвящается любителям громкой и качественной музыки. TDA7294 (TDA7293) – микросхема усилителя низкой частоты производства французской фирмы THOMSON. Схема содержит полевые транзисторы, что обеспечивает высокое качество звучания и мягкий звук. Простая схема, мало добавочных элементов делает схему доступной для изготовления любому радиолюбителю. Правильно собранный усилитель из исправных деталей начинает работать сразу и в наладке не нуждается.

Усилитель мощности звуковой частоты на микросхеме TDA 7294 отличается от остальных усилителей такого класса:

  • высокая выходная мощность,
  • широкий диапазон напряжения питания,
  • низкий процент гармонических искажений,
  • «мягкий» звук,
  • мало «навесных» деталей,
  • невысокая стоимость.

Применять можно в радиолюбительских аудиоустройствах, при доработке усилителей, акустических систем, устройств аудиотехники и т.д.

На рисунке ниже показана типовая принципиальная схема усилителя мощности для одного канала.


Микросхема TDA7294 это мощный операционный усилитель, коэффициент усиления которого устанавливается цепью отрицательной обратной связи, включенной между его выходом (14 выв. микросхемы) и инверсионным входом (выв. 2 микросхемы). Прямой сигнал поступает на вход (выв. 3 микросхемы). Цепь состоит из резисторов R1 и конденсатора С1. Изменяя значения сопротивлений R1 можно подстроить чувствительность усилителя под параметры предварительного усилителя.

Структурная схема усилителя на TDA 7294

Технические характеристики микросхемы TDA7294

Технические характеристики микросхемы TDA7293

Принципиальная схема усилителя на TDA7294

Для сборки этого усилителя понадобятся следующие детали:

1. Микросхема TDA7294 (или TDA7293)
2. Резисторы мощностью 0.25 вата
R1 – 680 Om
R2, R3, R4 – 22 kOm
R5 – 10 kOm
R6 – 47 kOm
R7 – 15 kOm
3. Конденсатор плёночный, полипропиленовый:
C1 – 0.74 mkF
4. Конденсаторы электролитические:
C2, C3, C4 – 22 mkF 50 volt
C5 – 47 mkF 50 volt
5. Резистор переменный сдвоенный — 50 kOm

На одной микросхеме можно собрать моно усилитель. Чтобы собрать стерео усилитель, надо сделать две платы. Для этого все необходимые детали умножаем на два, кроме сдвоенного переменного резистора и БП. Но об этом позже.

Печатная плата усилителя на микросхеме TDA 7294

Монтаж элементов схемы выполнен на печатной плате из одностороннего фольгированного стеклотекстолита.

Похожая схема, но немного побольше элементов, в основном конденсаторов. Включена схема задержки включения по входу «mute» выв.10. Это сделано для мягкого, без хлопков, включения усилителя.

На плату устанавливается микросхема, у которой удалены не использующиеся выводы: 5, 11 и 12. Производите монтаж проводом с сечением не менее 0,74 мм2. Саму микросхему необходимо установить на радиатор площадью не менее 600 см2. Радиатор не должен касаться корпуса усилителя так, как на нём будет отрицательное напряжение питания. Сам же корпус необходимо соединить с общим проводом.

Если использовать меньшую площадь радиатора, необходимо сделать принудительный обдув, поставив вентилятор в корпус усилителя. Вентилятор подойдёт от компьютера, напряжением на 12 вольт. Саму микросхему следует крепить на радиатор с помощью теплопроводной пасты. Радиатор не соединять с токоведущими частями, кроме шины отрицательного питания. Как писали выше, металлическая пластина сзади микросхемы соединена с цепью отрицательного питания.

Микросхемы для обоих каналов можно установить на один общий радиатор.

Блок питания для усилителя.

Блок питания представляет собой понижающий трансформатор с двумя обмотками напряжением 25 вольт и силой тока не менее 5 ампер. Напряжение на обмотках должно быть одинаковым и конденсаторы фильтра тоже. Нельзя допускать перекоса напряжения. При подаче двухполярного питания на усилитель, оно должно подаваться одновременно!

Диоды в выпрямителе лучше поставить сверхбыстрые, но в принципе подойдут и обычные типа Д242-246 на ток не менее 10А. Желательно параллельно каждому диоду припаять конденсатор ёмкостью 0,01 мкф. Также можно использовать готовые диодные мосты с такими же параметрами по току.

Конденсаторы фильтра C1 и C3 имеют ёмкость 22.000 мкф на напряжение 50 вольт, конденсаторы C2 и C4 имеют ёмкость 0,1 мкф.

Напряжение питания в 35 вольт должно быть только при нагрузке 8 Ом, если у вас нагрузка 4 Ома, то напряжение питания надо уменьшить до 27 вольт. В этом случае напряжение на вторичных обмотках трансформатора должно быть 20 вольт.

Можно использовать два одинаковых трансформатора мощностью 240 ватт каждый. Один из них служит для получения положительного напряжения, второй — отрицательного. Мощность двух трансформаторов составляет 480 ватт, что вполне подойдет для усилителя с выходной мощностью 2 х 100 Ватт.

Трансформаторы ТБС 024 220-24 можно заменить на любые другие мощностью не менее 200 Ватт каждый. Как писали выше питание должно быть одинаковое — транcформаторы должны быть одинаковые!!! Напряжение на вторичной обмотке каждого трансформатора от 24 до 29 вольт.

Схема усилителя повышенной мощности на двух микросхемах TDA7294 по мостовой схеме.

По такой схеме для стерео варианта понадобится четыре микросхемы.

Технические характеристики усилителя:

  • Максимальная выходная мощность на нагрузке 8 Ом (пит. +/- 25В) — 150 Вт;
  • Максимальная выходная мощность на нагрузке 16 Ом (пит. +/- 35В) — 170 Вт;
  • Сопротивление нагрузки: 8 — 16 Ом;
  • Коэф. гармонических искажений, при макс. мощности 150 ватт, напр. 25В, нагр. 8 Ом, частоте 1 кГц — 10%;
  • Коэф. гармонических искажений, при мощности 10-100 ватт, напр. 25В, нагр. 8 Ом, частоте 1 кГц — 0,01%;
  • Коэф. гармонических искажений, при мощности 10-120 ватт, напр. 35В, нагр. 16 Ом, частоте 1 кГц — 0,006%;
  • Частотный диапазон (при нер. АЧХ 1 db) — 50Гц … 100кГц.

Вид готового усилителя в деревянном корпусе с прозрачной верхней крышкой из оргстекла.

Для работы усилителя в полную мощность нужно подать необходимый уровень сигнала на вход микросхемы, а это не менее 750мВ. Если сигнала не хватает, то нужно собрать для раскачки предварительный усилитель.

Схема предварительного усилителя на TDA1524A

Налаживание усилителя

Правильно собранный усилитель в налаживании не нуждается, но никто не гарантирует, что все детали абсолютно исправны, при первом включении нужно соблюдать осторожность.

Первое включение проводится без нагрузки и с отключенным источником входного сигнала (лучше вообще закоротить вход перемычкой). Хорошо бы в цепь питания (и в «плюс» и в «минус» между источником питания и самим усилителем) включить предохранители порядка 1А. Кратковременно (~0,5 сек.) подаем напряжение питания и убеждаемся, что ток, потребляемый от источника небольшой — предохранители не сгорают. Удобно, если в источнике есть светодиодные индикаторы — при отключении от сети, светодиоды продолжают гореть не менее 20 секунд: конденсаторы фильтра долго разряжаются маленьким током покоя микросхемы.

Если потребляемый микросхемой ток большой (больше 300 мА), то причин может быть много: КЗ в монтаже; плохой контакт в «земляном» проводе от источника; перепутаны «плюс» и «минус»; выводы микросхемы касаются перемычки; неисправна микросхема; неправильно впаяны конденсаторы С11, С13; неисправны конденсаторы С10-С13.

Убедившись, что с током покоя все нормально, смело включаем питание и измеряем постоянное напряжение на выходе. Его величина не должна превышать +-0,05 В. Большое напряжение говорит о проблемах с С3 (реже с С4), или с микросхемой. Бывали случаи, когда «межземельный» резистор либо был плохо пропаян, либо вместо 3 Ом имел сопротивление 3 кОм. При этом на выходе была постоянка 10…20 вольт. Подключив к выходу вольтметр переменного тока, убеждаемся, что переменное напряжение на выходе равно нулю (это лучше всего делать с замкнутым входом, или просто с не подключенным входным кабелем, иначе на выходе будут помехи). Наличие на выходе переменного напряжения говорит о проблемах с микросхемой, или цепями С7R9, С3R3R4, R10. К сожалению, зачастую обычные тестеры не могут измерить высокочастотное напряжение, которое появляется при самовозбуждении (до 100 кГц), поэтому лучше всего здесь использовать осциллограф.

Усилитель на TDA2822

Характеристики:
Выходная мощность 2х1Вт..
Напряжение питания 3-10В.

Усилитель на TDA1558Q

Микросхема TDA1558 Q - это четырехканальный усилитель мощности с выходной мощностью 11 Вт (4 канала при Rн=2 Ом), 22 Вт (2 канала в мостовом включении при Rн=4 Ом). Предназначена для применения в звуковоспроизводящей Hi-Fi аппаратуре.
Усилитель имеет защиту выходного каскада от короткого замыкания и перегрузок по току, переполюсовки питания и термозащиту.
В ИМС встроен стабилизатор напряжения с коэффициентом подавления пульсаций 48 дБ и детектор нелинейных искажений, позволяющий автоматически переводить усилитель в режим "мягкого ограничения" (при совместном использовании с ИМС.
При отключении вывода 14 от источника питания ИМС переводится в дежурный режим с током потребления менее 14 мкА.
TDA 1558 - две схемы включения: 2*22W и 4*11W

Основные технические характеристики:
Напряжение питания: 10-18 В
Полоса частот: 20-20000 кГц
Входное наряжение: TDA-1558 0,05 В
Сопротивление нагрузки: 4 Ом
Выходная мощност:ь 2x22 Вт
Коэффициент гармоник: 0,1 %

Усилитель на TDA2005 Моно
Технические характеристики Напряжение питания: 6…15 В.
Ток в режиме покоя: 60 мА.
Диапазон воспроизводимых частот: 40…20000 Гц.
Коэффициент нелинейных искажений: 1 %.
Сопротивление нагрузок: 4…8 Ом.
Выходная мощность: 15 Вт.
Входная чувствительность: 300 мВ.
Коэффициент усиления Au: 50 дБ.

Uпит - 7...16 V
Iмакc - 6 A
Rнагp - 3,2...16 Om
Uвх - 40...70 mV
В большинcтве cлyчаев на входе нyжен делитель (чyт-кая она). Может в этом и c 1558 пpоблема?
Ёмкоcти на входе - по вкycy (0,33 мкф), pезиcтоpы килоом по 10, ёмкость кондёров на БП - чем больше тем лучше.

TDA7294

Характеристики усилителя: Питание - Двухполярное (от +-12 до +-40V)
F вых. - 20-20000 Hz

Р вых.max (пит.+-40V, Rн=8оМ) - 100W Р вых.max (пит.+-35V, Rн=4оМ) - 100W К гарм (Рвых=0.7Рmax) - <0.1%
Uвх - 700mV
Схема:

TDA2030A

Микросхема усилителя НЧ TDA2030A фирмы ST Microelectronics пользуется заслуженной популярностью среди радиолюбителей. Она обладает высокими электрическими характеристиками и низкой стоимостью, что позволяет при минимальных затратах собирать на ней высококачественные УНЧ мощностью до 18 Вт. Однако не все знают о ее "скрытых достоинствах": оказывается, на этой ИМС можно собрать ряд других полезных устройств. Микросхема TDA2030A представляет собой 18 Вт Hi-Fi усилитель мощности класса АВ или драйвер для УНЧ мощностью до 35 Вт (с мощными внешними транзисторами). Она обеспечивает большой выходной ток, имеет малые гармонические и интермодуляционные искажения, широкую полосу частот усиливаемого сигнала, очень малый уровень собственных шумов, встроенную защиту от короткого замыкания выхода, автоматическую систему ограничения рассеиваемой мощности, удерживающую рабочую точку выходных транзисторов ИМС в безопасной области. Встроенная термозащита обеспечивает выключение ИМС при нагреве кристалла выше 145°С. Микросхема выполнена в корпусе Pentawatt и имеет 5 выводов. Вначале вкратце рассмотрим несколько схем стандартного применения ИМС - усилителей НЧ. Типовая схема включения TDA2030A показана на рис.1.

Микросхема включена по схеме неинвертирующего усилителя. Коэффициент усиления определяется соотношением сопротивлений резисторов R2 и R3, образующих цепь ООС. Вычисляется он по формуле Gv=1+R3/R2 и может быть легко изменен подбором сопротивления одного из резисторов. Обычно это делают с помощью резистора R2. Как видно из формулы, уменьшение сопротивления этого резистора вызовет увеличение коэффициента усиления (чувствительности) УНЧ. Емкость конденсатора С2 выбирают исходя из того, чтобы его емкостное сопротивление Хс=1 /2?fС на низшей рабочей частоте было меньше R2 по крайней мере в 5 раз. В данном случае на частоте 40 Гц Хс 2 =1/6,28*40*47*10 -6 =85 Ом. Входное сопротивление определяется резистором R1. В качестве VD1, VD2 можно применить любые кремниевые диоды с током I ПР 0,5... 1 А и U ОБР более 100 В, например КД209, КД226, 1N4007. Схема включения ИМС в случае использования однополярного источника питания показана на рис.2 .

Делитель R1R2 и резистор R3 образуют цепь смещения для получения на выходе ИМС (вывод 4) напряжения, равного половине питающего. Это необходимо для симметричного усиления обеих полуволн входного сигнала. Параметры этой схемы при Vs=+36 В соответствуют параметрам схемы, показанной на рис.1, при питании от источника ±18 В. Пример использования микросхемы в качестве драйвера для УНЧ с мощными внешними транзисторами показан на рис.3 .

При Vs=±18 В на нагрузке 4 Ом усилитель развивает мощность 35 Вт. В цепи питания ИМС включены резисторы R3 и R4, падение напряжения на которых является открывающим для транзисторов VT1 и VT2 соответственно. При малой выходной мощности (входном напряжении) ток, потребляемый ИМС, невелик, и падения напряжения на резисторах R3 и R4 недостаточно для открывания транзисторов VT1 и VT2. Работают внутренние транзисторы микросхемы. По мере роста входного напряжения увеличивается выходная мощность и потребляемый ИМС ток. При достижении им величины 0,3...0,4 А падение напряжения на резисторах R3 и R4 составит 0,45...0,6 В. Начнут открываться транзисторы VT1 и VT2, при этом они окажутся включенными параллельно внутренним транзисторам ИМС. Возрастет ток, отдаваемый в нагрузку, и соответственно увеличится выходная мощность. В качестве VT1 и VT2 можно применить любую пару комплементарных транзисторов соответствующей мощности, например КТ818, КТ819. Мостовая схема включения ИМС показана на рис.4.

Сигнал с выхода ИМС DA1 подается через делитель R6R8 на инвертирующий вход DA2, что обеспечивает работу микросхем в противофазе. При этом возрастает напряжение на нагрузке, и, как следствие, увеличивается выходная мощность. При Vs=±16 В на нагрузке 4 Ом выходная мощность достигает 32 Вт. Для любителей двух-, трехполосных УНЧ данная ИМС - идеальный вариант, ведь непосредственно на ней можно собирать активные ФНЧ и ФВЧ. Схема трехполосного УНЧ показана на рис.5.

Низкочастотный канал (НЧ) выполнен по схеме с мощными выходными транзисторами. На входе ИМС DA1 включен ФНЧ R3C4, R4C5, причем первое звено ФНЧ R3C4 включено в цепь ООС усилителя. Такое схемное решение позволяет простыми средствами (без увеличения числа звеньев) получать достаточно высокую крутизну спада АЧХ фильтра. Среднечастотный (СЧ) и высокочастотный (ВЧ) каналы усилителя собраны по типовой схеме на ИМС DA2 и DA3 соответственно. На входе СЧ канала включены ФВЧ C12R13, C13R14 и ФНЧ R11C14, R12C15, которые вместе обеспечивают полосу пропускания 300...5000 Гц. Фильтр ВЧ канала собран на элементах C20R19, C21R20. Частоту среза каждого звена ФНЧ или ФВЧ можно вычислить по формуле fСР=160/RC, где частота f выражена в герцах, R - в килоомах, С - в микрофарадах. Приведенные примеры не исчерпывают возможностей применения ИMC TDA2030A в качестве усилителей НЧ. Так, например, вместо двухполярного питания микросхемы (рис.3,4) можно использовать однополярное питание. Для этого минус источника питания следует заземлить, на неинвертирующий (вывод 1) вход подать смещение, как показано на рис.2 (элементы R1-R3 и С2). Наконец, на выходе ИМС между выводом 4 и нагрузкой необходимо включить электролитический конденсатор, а блокировочные конденсаторы по цепи -Vs из схемы исключить.

Рассмотрим другие возможные варианты использования этой микросхемы. ИМС TDA2030A представляет собой не что иное, как операционный усилитель с мощным выходным каскадом и весьма неплохими характеристиками. Основываясь на этом, были спроектированы и опробованы несколько схем нестандартного ее включения. Часть схем была опробована "в живую", на макетной плате, часть - смоделирована в программе Electronic Workbench.

Мощный повторитель сигнала.

Сигнал на выходе устройства рис.6 повторяет по форме и амплитуде входной, но имеет большую мощность, т.е. схема может работать на низкоомную нагрузку. Повторитель может быть использован, например, для умощнения источников питания, увеличения выходной мощности низкочастотных генераторов (чтобы можно было непосредственно испытывать головки громкоговорителей или акустические системы). Полоса рабочих частот повторителя линейна от постоянного тока до 0,5... 1 МГц, что более чем достаточно для генератора НЧ.

Умощнение источников питания.

Микросхема включена как повторитель сигнала, выходное напряжение (вывод 4) равно входному (вывод 1), а выходной ток может достигать значения 3,5 А. Благодаря встроенной защите схема не боится коротких замыканий в нагрузке. Стабильность выходного напряжения определяется стабильностью опорного, т.е. стабилитрона VD1 рис.7 и интегрального стабилизатора DA1 рис.8 . Естественно, по схемам, показанным на рис.7 и рис.8, можно собрать стабилизаторы и на другое напряжение, нужно лишь учитывать, что суммарная (полная) мощность, рассеиваемая микросхемой, не должна превышать 20 Вт. Например, нужно построить стабилизатор на 12 В и ток 3 А. В наличии есть готовый источник питания (трансформатор, выпрямитель и фильтрующий конденсатор), который выдает U ИП = 22 В при необходимом токе нагрузки. Тогда на микросхеме происходит падение напряжения U ИМС = U ИП - U ВЫХ = 22 В -12 В = 10В, и при токе нагрузки 3 А рассеиваемая мощность достигнет величины Р РАС = U ИМС *I Н = 10В*3А = 30 Вт, что превышает максимально допустимое значение для TDA2030A. Максимально допустимое падение напряжения на ИМС может быть рассчитано по формуле:
U ИМС = Р РАС.МАХ / I Н. В нашем примере U ИМС = 20 Вт / 3 А = 6,6 В, следовательно максимальное напряжение выпрямителя должно составлять U ИП = U ВЫХ +U ИМС = 12В + 6,6 В =18,6 В. В трансформаторе количество витков вторичной обмотки придется уменьшить. Сопротивление балластного резистора R1 в схеме, показанной на рис.7, можно посчитать по формуле:
R1 = (U ИП - U СТ)/I СТ, где U СТ и I СТ - соответственно напряжение и ток стабилизации стабилитрона. Пределы тока стабилизации можно узнать из справочника, на практике для маломощных стабилитронов его выбирают в пределах 7...15 мА (обычно 10 мА). Если ток в вышеприведенной формуле выразить в миллиамперах, то величину сопротивления получим в килоомах.

Простой лабораторный блок питания.

рис.9 . Изменяя напряжение на входе ИМС с помощью потенциометра R1, получают плавно регулируемое выходное напряжение. Максимальный ток, отдаваемый микросхемой, зависит от выходного напряжения и ограничен все той же максимальной рассеиваемой мощностью на ИМС. Рассчитать его можно по формуле:
I МАХ = Р РАС.МАХ / U ИМС
Например, если на выходе выставлено напряжение U ВЫХ = 6 В, на микросхеме происходит падение напряжения U ИМС = U ИП - U ВЫХ = 36 В - 6 В = 30 В, следовательно, максимальный ток составит I МАХ = 20 Вт / 30 В = 0,66 А. При U ВЫХ = 30 В максимальный ток может достигать максимума в 3,5 А, так как падение напряжения на ИМС незначительно (6 В).

Стабилизированный лабораторный блок питания.

Электрическая схема блока питания показана на рис.10 . Источник стабилизированного опорного напряжения - микросхема DA1 - питается от параметрического стабилизатора на 15 В, собранного на стабилитроне VD1 и резисторе R1. Если ИМС DA1 питать непосредственно от источника +36 В, она может выйти из строя (максимальное входное напряжение для ИМС 7805 составляет 35 В). ИМС DA2 включена по схеме неинвертирующего усилителя, коэффициент усиления которого определяется как 1+R4/R2 и равен 6. Следовательно, выходное напряжение при регулировке потенциометром R3 может принимать значение практически от нуля до 5 В * 6=30 В. Что касается максимального выходного тока, для этой схемы справедливо все вышесказанное для простого лабораторного блока питания (рис.9). Если предполагается меньшее регулируемое выходное напряжение (например, от 0 до 20 В при U ИП = 24 В), элементы VD1, С1 из схемы можно исключить, а вместо R1 установить перемычку. При необходимости максимальное выходное напряжение можно изменить подбором сопротивления резистора R2 или R4.

Регулируемый источник тока.

Электрическая схема стабилизатора показана на рис.11 . На инвертирующем входе ИМС DA2 (вывод 2), благодаря наличию ООС через сопротивление нагрузки, поддерживается напряжение U BX . Под действием этого напряжения через нагрузку протекает ток I Н = U BX / R4. Как видно из формулы, ток нагрузки не зависит от сопротивления нагрузки (разумеется, до определенных пределов, обусловленных конечным напряжением питания ИМС). Следовательно, изменяя U BX от нуля до 5 В с помощью потенциометра R1, при фиксированном значении сопротивления R4=10 Ом, можно регулировать ток через нагрузку в пределах 0...0,5 А. Данное устройство может быть использовано для зарядки аккумуляторов и гальванических элементов. Зарядный ток стабилен на протяжении всего цикла зарядки и не зависит от степени разряженности аккумулятора или от нестабильности питающей сети. Максимальный зарядный ток, выставляемый с помощью потенциометра R1, можно изменить, увеличивая или уменьшая сопротивление резистора R4. Например, при R4=20 Ом он имеет значение 250 мА, а при R4=2 Ом достигает 2,5 А (см. формулу выше). Для данной схемы справедливы ограничения по максимальному выходному току, как для схем стабилизаторов напряжения. Еще одно применение мощного стабилизатора тока - измерение малых сопротивлений с помощью вольтметра по линейной шкале. Действительно, если выставить значение тока, например, 1 А, то, подключив к схеме резистор сопротивлением 3 Ом, по закону Ома получим падение напряжения на нем U=l*R=l А*3 Ом=3 В, а подключив, скажем, резистор сопротивлением 7,5 Ом, получим падение напряжения 7,5 В. Конечно, на таком токе можно измерять только мощные низкоомные резисторы (3 В на 1 А - это 3 Вт, 7,5 В*1 А=7,5 Вт), однако можно уменьшить измеряемый ток и использовать вольтметр с меньшим пределом измерения.

Мощный генератор прямоугольных импульсов.

Схемы мощного генератора прямоугольных импульсов показаны на рис.12 (с двухполярным питанием) и рис.13 (с однополярным питанием). Схемы могут быть использованы, например, в устройствах охранной сигнализации. Микросхема включена как триггер Шмитта, а вся схема представляет собой классический релаксационный RC-генератор. Рассмотрим работу схемы, показанной на рис. 12. Допустим, в момент включения питания выходной сигнал ИМС переходит на уровень положительного насыщения (U ВЫХ = +U ИП). Конденсатор С1 начинает заряжаться через резистор R3 с постоянной времени Cl R3. Когда напряжение на С1 достигнет половины напряжения положительного источника питания (+U ИП /2), ИМС DA1 переключится в состояние отрицательного насыщения (U ВЫХ = -U ИП). Конденсатор С1 начнет разряжаться через резистор R3 с той же постоянной времени Cl R3 до напряжения (-U ИП / 2), когда ИМС снова переключится в состояние положительного насыщения. Цикл будет повторяться с периодом 2,2C1R3, независимо от напряжения источника питания. Частоту следования импульсов можно посчитать по формуле:
f=l/2,2*R3Cl. Если сопротивление выразить в килоомах, а емкость в микрофарадах, то частоту получим в килогерцах.

Мощный низкочастотный генератор синусоидальных колебаний.

Электрическая схема мощного низкочастотного генератора синусоидальных колебаний показана на рис.14. Генератор собран по схеме моста Вина, образованного элементами DA1 и С1, R2, С2, R4, обеспечивающими необходимый фазовый сдвиг в цепи ПОС. Коэффициент усиления по напряжению ИМС при одинаковых значениях Cl, C2 и R2, R4 должен быть точно равен 3. При меньшем значении Ку колебания затухают, при большем - резко возрастают искажения выходного сигнала. Коэффициент усиления по напряжению определяется сопротивлением нитей накала ламп ELI, EL2 и резисторов Rl, R3 и равен Ky = R3 / Rl + R EL1,2 . Лампы ELI, EL2 работают в качестве элементов с переменным сопротивлением в цепи ООС. При увеличении выходного напряжения сопротивление нитей накала ламп за счет нагревания увеличивается, что вызывает уменьшение коэффициента усиления DA1. Таким образом, стабилизируется амплитуда выходного сигнала генератора, и сводятся к минимуму искажения формы синусоидального сигнала. Минимума искажений при максимально возможной амплитуде выходного сигнала добиваются с помощью подстроечного резистора R1. Для исключения влияния нагрузки на частоту и амплитуду выходного сигнала на выходе генератора включена цепь R5C3, Частота генерируемых колебаний может быть определена по формуле:
f=1/2piRC. Генератор может быть использован, например, при ремонте и проверке головок громкоговорителей или акустических систем.

В заключение необходимо отметить, что микросхему нужно установить на радиатор с площадью охлаждаемой поверхности не менее 200 см 2 . При разводке проводников печатной платы для усилителей НЧ необходимо проследить, чтобы "земляные" шины для входного сигнала, а также источника питания и выходного сигнала подводились с разных сторон (проводники к этим клеммам не должны быть продолжением друг друга, а соединяться вместе в виде "звезды"). Это необходимо для минимизации фона переменного тока и устранения возможного самовозбуждения усилителя при выходной мощности, близкой к максимальной.

Усилитель на TDA2003

Характеристики:
Напряжение питания - 8-16V
Рвых:
2 оМ = 10W
4 oM = 5W
8 oM = 2.5W
Fраб - 30-30000 Hz
Входящее напряжение - 50mV
Кгарм. (Рвых=2W) - 0.1%
Sтеплоотвода - ~100 sm 2

Уходят в прошлое, и теперь, чтобы собрать какой-либо простой усилитель, уже не надо мучаться с расчетами и клепать печатную плату больших размеров.

Сейчас почти вся дешевая усилительная техника делается на микросхемах. Самое большое распространение получили микросхемы TDA для усиления аудиосигнала. В настоящее время они используются в автомагнитолах, в активных сабвуферах, в домашней акустике и во многих других аудиоусилителях и выглядят примерно вот так:



Плюсы микросхем TDA

  1. Для того, чтобы собрать на них усилитель, достаточно подвести питание, подключить динамики и несколько радиоэлементов.
  2. Габариты этих микросхем совсем небольшие, но надо будет их ставить на радиатор, иначе будут сильно греться.
  3. Они продаются в любом радиомагазине. На Али что-то дороговатые, если брать в розницу.
  4. В них встроены различные защиты и другие опции, типа отключения звука и тд. Но по моим наблюдениям, защиты срабатывают не очень хорошо, поэтому микросхемы часто дохнут или от перегрева, либо от . Так что желательно не замыкать выводы микросхемы между собой и не перегревать микросхему, выжимая из нее все соки.
  5. Цена. Я бы не сказал, что они очень дорогие. По цене и выполняемым функциям им нет равных.

Одноканальный усилитель на TDA7396

Давайте соберем простой одноканальный усилитель на микросхеме TDA7396. На момент написания статьи я ее взял по цене в 240 рублей. В даташите на микросхему говорилось, что эта микросхема может выдать до 45 Ватт в нагрузку 2 Ома. То есть если замерить сопротивление катушки динамика и оно будет равняться около 2 Ом, то на динамике вполне можно получить пиковую мощность в 45 Ватт. Этой мощности вполне хватит, чтобы устроить дискотеку в комнате не только для себя, но и для соседей и при этом получить посредственное звучание, что, конечно же, не сравнить с hi-fi усилителями.

Вот распиновка микросхемы:


Собирать наш усилитель будем по типичной схеме, которая была приложена в самом даташите:


На ножку 8 подаем +Vs, а на 4 ножку ничего не подаем. Следовательно, схема примет вот такой вид:


Vs – это напряжение питания. Оно может быть от 8 и до 18 Вольт. “IN+” и “IN-” – сюда подаем слабый звуковой сигнал. К 5 и 7 ноге цепляем динамик. Шестую ногу садим на минус.

Вот моя сборка навесным монтажом


Конденсаторы на входе питания 100нФ и 1000мкФ я не использовал, так как у меня с блока питания итак идет чистое напряжение.

Раскачивал динамик с такими параметрами:


Как видите, сопротивление катушки 4 Ома. Полоса частот говорит о том, что он сабвуферного типа.

А вот так у меня выглядит саб в самопальном корпусе:


Пробовал снять видео, но звук на видео у меня снимает очень плохо. Но все-таки могу сказать, что с телефона на средней мощности уже долбило так, что уши заворачивались, хотя потребление всей схемы в рабочем виде составило всего около 10 Ватт (умножаем 14,3 на 0,73). В этом примере я взял напряжение, как в автомобиле, то есть 14,4 Вольта, что вполне укладывается в наш рабочий диапазон от 8 и до 18 Вольт.


Если у вас нет мощного источника питания, то его можно собрать вот по этой схеме.

Не зацикливайтесь именно на этой микросхеме. Этих микросхем TDA, как я уже говорил, существует множество видов. Некоторые из них усиливают стереосигнал и могут выдавать звук сразу на 4 динамика, как это сделано в автомагнитолах. Так что не поленитесь порыться в интернете и найти подходящую ТДАшку. После окончания сборки дайте заценить соседям ваш усилитель, выкрутив ручку громкости на всю балалайку и прислонив мощный динамик к стене).

А вот в статье я собирал усилитель на микросхеме TDA2030A

Получилось очень даже неплохо, так как TDA2030A обладает лучшими характеристиками, чем TDA7396

Также приложу для разнообразия еще схему от подписчика, у которого усилитель на TDA 1557Q работает исправно уже более 10 лет подряд:


Усилители на Алиэкспресс

На Али я также находил кит наборы на TDA. Например, вот этот стерео усилитель по 15 Ватт на канал по цене 1$. Этой мощности вполне хватит, чтобы потусить под любимые треки в комнатушке


Купить можно .

А вот он уже сразу готовый


Да и вообще, этих модулей усилителей на Алиэкпресс ну очень много. Нажимаете на эту ссылку и выбираете любой понравившийся усилитель.

Микросхема TDA7294, представляющая интегральный усилитель низкой частоты, который очень популярен среди электронщиков, как начинающих, так и профессионалов. В сети полно разных отзывов о данной микросхеме. Решил и я собрать усилитель на ней. Схему я взял из даташита.

Питается данная “микруха” двухполярным питанием. Для новичков поясню, что не достаточно иметь “плюс” и “минус”.

Нужен источник с плюсовым выводом, минусовым выводом и общим. Например, относительно общего провода должно быть плюс 30 Вольт, а в другом плече минус 30 Вольт.

Усилитель на TDA7294 достаточно мощный. Максимальная паспортная мощность 100 Вт, но это с нелинейными искажениями в 10% и при максимальном напряжении (в зависимости от сопротивления нагрузки). Надежно снимать можно 70Вт. Таким образом, на свой день рождения я прослушивал две параллельно соединенные колонки “Радиотехника S30” на одном канале TDA 7294. Весь вечер и половину ночи, колонки звучали, иногда вводя их в перегруз. Но усилитель спокойно выдержал, хоть и порой перегревался (из-за плохого охлаждения).

Основные характеристики TDA 7294

Подаваемое напряжение +-10В…+-40В

Пиковый выходной ток до 10А

Рабочая температура кристалла до 150 градусов Цельсия

Выходная мощность при d=0.5%:

При +-35В и R=8Ом 70Вт

При +-31В и R=6Ом 70Вт

При +-27В и R=4Ом 70Вт

При d=10% и повышенном напряжении (смотрите ) можно добиться и 100Вт, но это будут грязные 100Вт.

Схема усилителя на ТДА7294

Приведенная схема взята из паспорта, все номиналы сохранены. При правильном монтаже и правильно выбранных номиналов элементов, усилитель запускается с первого раза и не требует никаких настроек.

Элементы усилителя

Номиналы всех элементов указаны на схеме. Мощность резисторов 0,25 Вт.

Саму “микруху” следует установить на радиатор. Если радиатор соприкасается с другими металлическими элементами корпуса, либо радиатором является сам корпус, то необходимо установить диэлектрическую прокладку между радиатором и корпусом TDA7294.

Прокладка может быть силиконовая или слюдяная.

Площадь радиатора должна составлять не менее 500 кв.см., чем больше, тем лучше.

Изначально я собирал два канала усилителя, так как источник питания позволял, но я не правильно подобрал корпус и оба канала просто не влезли в корпус по габаритам. Пытался я уменьшить печатную плату, но ничего не вышло.

После полной сборки усилителя я понял, что корпуса не достаточно для охлаждения и одного канала усилителя. Корпус у меня являлся радиатором. Короче говоря, раскатал губу на два канала.

При прослушивании моего устройства на полную громкость, кристалл начинал перегреваться, но я убавлял уровень громкости и продолжал тестировать. В итоге, до полуночи слушал я музыку на умеренной громкости, периодически вгоняя усилитель в перегрев. Усилитель на ТДА7294 оказался очень даже надежным.

Режим STAND - BY TDA 7294

Если на 9 ногу подать 3,5В и более, то микросхема выходит из спящего режима, если подать менее 1,5В, то войдет в спящий режим.

Для того, чтобы устройство вывести из спящего режима, нужно 9 ногу через резистор 22 кОм подключить к плюсовому выводу (источника двухполярного питания).

А если 9 ногу через тот же резистор подключить к выводу GND (источника двухполярного питания), то устройство войдет в спящий режим.

Печатная плата, находящаяся под статьей, разведена так, что 9 нога через резистор 22 кОм соединена дорожкой с плюсовым выводом источника питания. Следовательно, при включении источника питания, усилитель сразу же начинает работать не в спящем режиме.

Режим MUTE TDA 7294

Если на 10 ногу TDA7294 подать 3,5В и более, то устройство выйдет из режима приглушения. Если же подать менее 1,5В, то устройство войдет в режим приглушения.

Практически это делается так: через резистор 10 кОм 10 ногу микросхемы подключаем к плюсу двухполярного источника питания. Усилитель “запоет”, то есть не будет приглушен. На печатной плате, которая прикреплена к статье, так сделано с помощью дорожки. При подаче питания на усилитель, он сразу начинает петь, без всяких перемычек и тумблеров.

Если через резистор 10 кОм 10 ногу ТДА7294 соединить с выводом GND источника питания, то наш “усилок” войдет в режим приглушения.

Источник питания.

Источником напряжения для устройства послужил собранный , который себя показал очень даже хорошо. При прослушивании одного канала ключи теплые. Так же теплые и диоды Шоттки, хоть и не установлены на них радиаторы. ИИП без защит и софтстарта.

Схему данного ИИП многие критикуют, но она очень проста в сборке. Работает она надежно без плавного включения. Эта схема очень подходит начинающим электронщикам из-за своей простаты.

Корпус.

Корпус был куплен.

Довольно простая, Повторить ее сможет даже человек, не очень сильный в электротехнике. УНЧ на этой микросхеме будет идеальным для использования в составе акустической системы для домашнего компьютера, телевизора, кинотеатра. Преимущество его в том, что не требуется тонкая наладка и настройка, как в случае с транзисторными усилителями. А уж что говорить про отличие от ламповых конструкций - габариты намного меньше.

Не требуется высокого напряжения для питания анодных цепей. Конечно, присутствует нагрев, как и в ламповых конструкциях. Поэтому в том случае, если планируется использование усилителя на протяжении долгого времени, лучше всего установить кроме алюминиевого радиатора еще и хотя бы небольшой вентилятор для осуществления принудительного обдува. Без него на микросборке TDA7294 схема усилителя будет работать, но велика вероятность перехода в защиту по температуре.

Почему TDA7294?

Эта микросхема пользуется большой популярностью уже более 20 лет. Она завоевала доверие у радиолюбителей, так как у нее очень высокие характеристики, усилители на ее основе простые, повторить конструкцию сможет любой, даже начинающий радиолюбитель. Усилитель на микросхеме TDA7294 (схема приведена в статье) может быть как монофоническим, так и стереофоническим. Внутреннее устройство микросхемы состоит из Усилитель звуковой частоты, построенный на этой микросхеме, относится к классу АВ.

Достоинства микросхемы

Преимущества использования микросхемы для :

1. Очень большая мощность на выходе. Порядка 70 Вт, если нагрузка имеет сопротивление 4 Ом. В данном случае применяется обычная схема включения микросхемы.

2. Около 120 Вт при нагрузке 8 Ом (в мостовой схеме).

3. Очень низкий уровень посторонних шумов, искажения несущественные, воспроизводимые частоты лежат в диапазоне, полностью воспринимаемом человеческим ухом — от 20 Гц до 20 кГц.

4. Питание микросхемы может производиться от источника постоянного напряжения 10-40 В. Но есть небольшой недостаток — необходимо использовать двухполярный источник питания.

Стоит обратить внимание на одну особенность — коэффициент искажений при этом не превышает 1 %. На микросборке TDA7294 схема усилителя мощности настолько простая, что даже удивительно, как она позволяет получить такое качественное звучание.

Назначение выводов микросхемы

А теперь более подробно о том, какие выводы имеются у TDA7294. Первая ножка — это «сигнальная земля», соединяется с общим проводом всей конструкции. Выводы «2» и «3» — инвертирующий и неинвертирующий входы соответственно. «4» вывод также является «сигнальной землей», соединенной с общим проводом. Пятая ножка в усилителях звуковой частоты не используется. «6» ножка - это вольт-добавка, к ней подключается электролитический конденсатор. «7» и «8» выводы — плюс и минус питания входных каскадов соответственно. Ножка «9» — режим ожидания, используется в блоке управления.

Аналогично: «10» ножка - режим приглушения, также применяется при конструировании усилителя. «11» и «12» выводы не используются в конструкции усилителей звуковой частоты. С «14» вывода снимается выходной сигнал и подается на акустическую систему. «13» и «15» выводы микросхемы — это «+» и «-» для подключения питания выходного каскада. На микросхеме TDA7294 схема ничем не отличается от предложенных в статье, дополняется она только который соединяется со входом.

Особенности микросборки

При конструировании усилителя звуковой частоты нужно обращать внимание на одну особенность — минус питания, а это ножки «15» и «8», электрически связаны с корпусом микросхемы. Поэтому необходимо изолировать его от радиатора, который в любом случае будет использоваться в усилителе. Для этой цели необходимо использовать специальную термопрокладку. Если используется мостовая схема усилителя на TDA7294, обращайте внимание на вариант исполнения корпуса. Он может быть вертикального или горизонтального типа. Наиболее распространенным является вариант исполнения, обозначаемый как TDA7294V.

Защитные функции микросхемы TDA7294

В микросхеме предусмотрено несколько видов защиты, в частности, от перепада питающего напряжения. Если вдруг изменится напряжение питания, то микросхема уйдет в режим защиты, следовательно, не будет электрического повреждения. Выходной каскад также имеет защиту от перегрузок и короткого замыкания. Если корпус прибора нагревается до температуры 145 градусов, отключается звук. При достижении 150 градусов происходит переход в режим ожидания. Все выводы микросхемы TDA7294 защищены от электростатики.

Усилитель мощности

Просто, доступно каждому, а самое главное — дешево. Буквально за несколько часов вы можете собрать очень хороший усилитель звуковой частоты. Причем большую часть времени вы потратите на то, чтобы осуществить травление платы. Структура всего усилителя состоит из блоков питания и управления, а также 2-х каналов УНЧ. Старайтесь как можно меньше проводов использовать в конструкции усилителя. Придерживайтесь простых рекомендаций:

1. Обязательное условие — это подключение источника питания проводами к каждой плате УЗЧ.

2. Свяжите питающие провода в жгут. С помощью этого получится немного компенсировать магнитное поле, которое создается электрическим током. Для этого необходимо взять все три питающих провода — «общий», «минус» и «плюс», с небольшим натяжением сплести их в одну косичку.

3. Ни в коем случае не используйте в конструкции так называемые «земляные петли». Это случай, когда общий провод, соединяющий все блоки конструкции, замыкается в петлю. Провод массы необходимо подводить последовательно, начиная от входных далее к плате УЗЧ, и заканчиваться должен на выходных разъемах. Крайне важно входные цепи подключать при помощи экранированных проводов в изоляции.

Блок управления режимами ожидания и приглушения

В этой микросхеме имеется и приглушения. Осуществлять управление функциями нужно при помощи выводов «9» и «10». Включение режима происходит в том случае, если на этих ножках микросхемы нет напряжения, либо оно менее полутора вольт. Чтобы включить режим, необходимо подать на ножки микросхемы напряжение, значение которого превосходит 3,5 В. Чтобы управление платами усилителя происходило одновременно, что актуально для схем, построенных по типу моста, собирается один блок управления для всех каскадов.

Когда усилитель включается, в блоке питания заряжаются все конденсаторы. В блоке управления также один конденсатор накапливает заряд. При накапливании максимально возможного заряда происходит отключение режима ожидания. Второй конденсатор, применяемый в блоке управления, отвечает за функционирование режима приглушения. Он заряжается немного позже, поэтому режим приглушения отключается вторым.